Synthesis, Radiochemical Purity Control and Stability of Scandium-46-1,4,7-triazacyclononane-1,4,7-triacetic acid (\(^{46}\text{Sc}-\text{NOTA}\))

Duyeh Setiawan\(^1\)*, Iwan Hastiawan\(^2\), and Asri Nurul Bashiroh\(^2\)

\(^1\)Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Jl. Tamansari 71, Bandung 40132, Indonesia

\(^2\)Department of Chemistry, Faculty Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung-Sumedang km 21, Jatinangor-Sumedang 45363, Indonesia

Received April 26, 2017; Accepted July 31, 2017

ABSTRACT

The purposes of this research are to synthesize of scandium-46-1,4,7-triazacyclononane-1,4,7-triacetic acid (\(^{46}\text{Sc}-\text{NOTA}\)) labeled compound based on formation of stoichiometric complex bonding between radioisotope \(^{46}\text{Sc}\) and 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) ligand, then to determine radiochemical purity and stability of \(^{46}\text{Sc}-\text{NOTA}\). In this research, two variables, namely mole ratio of radioisotope to ligand (\(^{46}\text{Sc} : \text{NOTA}\)) and pH were investigated. The results showed that optimum condition was at the mole ratio of radioisotope to ligand (\(^{46}\text{Sc} : \text{NOTA}\)) of 1:2 and pH 5. The radiochemical purity and stability assay of \(^{46}\text{Sc}-\text{NOTA}\) were evaluated with paper chromatography and the result showed that \(^{46}\text{Sc}-\text{NOTA}\) gave radiochemical purity of 99.09 ± 0.2\% and was stable for 9 days.

Keywords: radioisotope \(^{46}\text{Sc}\); NOTA; synthesis; stability; radiotherapy

INTRODUCTION

In recent years, research on the compound complexes containing macrocyclic ligand with functional groups on its cyclic bonding has attracted the attention of researchers especially for the radiopharmaceutical and biomedical purpose [1].

One of ligand often used information of radioactive complex compounds is macrocyclic ligand its complex stable compared to non-cyclic ligands. The stability complex compounds to be considered for success in radiotherapy and diagnostic imaging application [2-8].

Radionuclide scandium-47, \(^{47}\text{Sc}\) (T\(_{1/2}\) = 3.35 days) which it serves as \(\beta\)-emitter (0.600 MeV 31.5\%) and gamma energy (159 keV 68.5\%) widely used in medical studies as radionuclide therapy and diagnosis. Due to relatively short of the half life (\(^{47}\text{Sc}\)), the study of chemical nature and its stability of scandium are mostly common using \(^{46}\text{Sc}\) instead of \(^{47}\text{Sc}\) even both had similar chemical behavior, but only had different half-life (T\(_{1/2}\) = 83 days) [9-13].

In present study, scandium-46 is easily produced because of its abundance in nature and can be used as an analog of scandium-47. Meanwhile, in the process of production of scandium-47 through the nuclear reaction of \(^{47}\text{Ti}\) \((n,p)\) \(^{47}\text{Sc}\) required fraction of fast neutrons with high energy and the results have not been promising due to difficult manufacturing techniques [14]. In this study, for complexing the radionuclide scandium complex a macrocyclic ligand, namely, 1,4,7-triazacyclononane-1,4,7-triacetate acid (NOTA) has been chosen.
EXPERIMENTAL SECTION

Materials

Chemicals used in this study were 1,4,7-triazacyclononane-1,4,7-triacetate acid (NOTA) ligand [10], radioisotopes 46ScCl$_3$ [9], hydrochloric acid, ammonium acetate 10%, ammonia 25%, DTPA (diethylene triamine penta acetate), methanol, all obtained from E. Merck.

Instrumentation

The equipment of glass tools used in this study was typically used in laboratory. The instruments used were the magnetic stirrer, dose calibrator, analytical balance, pH indicators, Multichannel Analyzer with HPGe detector (High Purity Germanium), single-channel Analyzer with NaI detector and vortex, electrophoresis.

Procedure

Synthesis of 46Sc-NOTA

Determination of optimum condition with mol variation. NOTA ligand solution added to radionuclides 46ScCl$_3$ solution with variation of mole ratio (2:1, 1:1, 1:2, 1:3). The solutions were incubated for 24 h, after that the radiochemical analysis was carried out by ascending paper chromatography developed with ammonia: distilled water (1:25). The solution then spotted onto chromatography paper and counted with using Single Channel Analyzer-NaI(TL).

pH effect assay. NOTA ligand was labeled with 46ScCl$_3$ at pH 5 and pH 13 and then incubated for 24 h. Labeled compound was spotted onto chromatography paper that developed in mobile phase consisting of ammonia: distilled water (1:25). The result of distribution activities were counted using Single Channel Analyzer-NaI(TL).

Optimum condition assay. The labeled compound, 46Sc-NOTA was spotted onto three kind of chromatography papers, namely, 3 MM, ET 31 then each chromatography papers developed in different mobile phases, ammonia : distilled water (1:25), 10 mM DTPA pH 5 and ammonium acetate 10% : methanol (1:1) respectively. The results were counted using Single Channel Analyzer-NaI(TL).

Electrophoresis of 46Sc-NOTA. The labeled compound 46Sc-NOTA was spotted onto electrophoresis paper, submerged in HCl 0.01 M for 1 h in 350 voltage DC.

Stability assay. The labeled compound 46Sc-NOTA was spotted onto 3 MM chromatography paper and developed in mobile phase consisting of ammonia: distilled water (1:25). The result of distribution activities were counted using Single Channel Analyzer-NaI(TL). Stability towards storage was examined by performing labeling test at day 1 until day 9.

RESULT AND DISCUSSION

Determination of Optimum Condition with Mol Variation

46Sc-NOTA compound has Rf value of range 0.8–0.9 [10] and radioisotope 46Sc has Rf value of 0 [9,11], these values show the difference of distribution velocity and interaction in solvent.

The moles ratio of 46Sc and NOTA ligand, very significantly influenced radiochemical purity of 46Sc-NOTA. The mole ratio of 46Sc and NOTA 2:1 caused low radiochemical purity (34.08%). This result showed that with the less number of NOTA, 46Sc has not fully reacted with NOTA and therefore free Sc are still remain (Fig. 1a). For a ratio of 1:1 (Fig. 1b), the radiochemical purity of 64.40% was obtained. This indicates that the ratio of 1:1 does not qualified as radiopharmaceutical preparation. With the ratios 1:2 (Fig. 1c) and 1:3 (Fig. 1d), radiochemical purities obtained were of 99.09% and 99.72%, respectively. There indicated that the mole ratio has been achieved stoichiometrically, so that all the reactants were reacted completely. Therefore formed Sc-NOTA complexes were in high purity because there is no excessive 46Sc. The high radiochemical purity of Sc-NOTA (> 95%), the product has fulfilled the requirements of radiochemical purity for the preparation of radiopharmaceutical (> 95%) [15].

pH Effect Assay

Fig. 2 shows the chromatogram at pH 13 with 1.05% radiochemical purity peaks formed at Rf = 0 which showed that free Sc was still formed (Fig. 2b). While at pH 5 with a radiochemical purity of 99.09% peak formed is at Rf = 0.9 (Fig. 2a). This result showed that pH value to complex the radioisotope compound may be applied for radiotherapy at range of pH 5-7 that matches with pH of human blood.
Determining the Optimum Conditions of Chromatography Paper

Variation of solvent was conducted to determine which more effective solvent for use is in the present study of the chromatographic processing that can separate the complex from its impurity with a good resolution. The effectiveness was determined from the result of chromatography paper that demonstrated the good resolution of the separation peak of the complex and its impurity. The selection of paper has chosen by the power of capillarity for chromatography its acts as the passage of the mobile phase. The most effective paper chromatography for this study was 3 MM chromatography paper. Although the time of solvent rise in 3 M chromatography paper is relatively long but the radiochemical purity is better than the 31 E paper. The results of paper chromatographic variations are summarized in Table 1.

Fig 1. Chromatogram of 46Sc-NOTA variation moles ratio of 46Sc with NOTA ligand in mobile phase ammonia : distilled water (1:25) using 3 MM chromatography paper; (a) Sc: NOTA 2:1, (b) Sc: NOTA 1:1, (c) Sc: NOTA 1:2, (d) Sc: NOTA 1:3

Fig 2. 46Sc-NOTA's chromatogram in mobile phase ammonia : distilled water (1:25) using 3 MM chromatography paper; (a) Sc: NOTA at pH 5, (b) Sc: NOTA at pH 13
Table 1. The result of variation of chromatography system

<table>
<thead>
<tr>
<th>No</th>
<th>Stationary Phase</th>
<th>Mobile Phase</th>
<th>46ScCl$_3$ Rf</th>
<th>46Sc-NOTA Rf</th>
<th>Elution time (in minute)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3 MM</td>
<td>Ammonia : distilled water (1:25)</td>
<td>0</td>
<td>0.9-1</td>
<td>60</td>
<td>Useable</td>
</tr>
<tr>
<td>2</td>
<td>3 MM</td>
<td>DTPA 10 mM pH 5</td>
<td>0.9-1</td>
<td>1</td>
<td>65</td>
<td>Useable</td>
</tr>
<tr>
<td>3</td>
<td>3 MM</td>
<td>Ammonium acetate (10%) : Methanol (1:1)</td>
<td>0-0.2 (tailing)</td>
<td>0.5-0.7</td>
<td>75</td>
<td>Unusable</td>
</tr>
<tr>
<td>4</td>
<td>Paper 31 ET</td>
<td>Ammonia : distilled water (1:25)</td>
<td>0</td>
<td>1</td>
<td>30</td>
<td>Useable</td>
</tr>
<tr>
<td>5</td>
<td>Paper 31 ET</td>
<td>DTPA 10 mM pH 5</td>
<td>1</td>
<td>1</td>
<td>25</td>
<td>Useable</td>
</tr>
<tr>
<td>6</td>
<td>Paper 31 ET</td>
<td>Ammonium acetate (10%) : Methanol (1:1)</td>
<td>0 (tailing)</td>
<td>0.7-0.9 (tailing)</td>
<td>60</td>
<td>Unusable</td>
</tr>
</tbody>
</table>

In ammonia : distilled water (1:25) with 3 MM and paper 31 ET chromatography paper, the chromatograms do not produce tailings, Rf = 0 (46Sc), Rf = 0.9–1 (46Sc-NOTA) and the elution time take 60 min and 30 min.

Electrophoresis of 46Sc-NOTA

The determination of the charge of 46Sc-NOTA was performed using electrophoresis on 3 MM paper with an electrolyte solution, hydrochloric acid 0.01 M at 350 voltage DC for 1 h.

The results of electrophoresis (Fig. 3) showed that NOTA was a three dentate ligand and had a charge of 3- (NOTA$^{3-}$). NOTA Sc$^{3+}$ binds to metals through coordination bonding of three amine group with the carboxylic group to form uncharged 46Sc-NOTA. The complex structures can be seen in Fig. 4.

For the complexation of Sc$^{3+}$, macrocyclic ligand was chosen because it can form complexes with solid metal cations M$^{3+}$, which are stable thermodynamically and kinetically. Structural factors such as stiffness, cavity size and the nature and the number of donor atoms in the macrocyclic chelating agent has dual function and it has an important role in chemical and biological behavior of the complex form [2].

Stability Assay

The stability assay of 46Sc-NOTA was conducted using 3 MM paper chromatography that were developed in mobile phase of ammonia: distilled water (1:25). The complex compounds of 46Sc-NOTA was quite stable with a radiochemical purity (RCP) 95% stands for 9 days as shown in Fig. 5.
CONCLUSION

The complex compound of scandium-NOTA synthesized from NOTA ligand and scandium-46 with the optimum mole ratio of 1:2 and pH 5 gave radiochemical purity of 99.09 ± 0.2%. The complex showed stable for 9 days with no significant reduction of purity (> 95%).

ACKNOWLEDGEMENT

The authors are thankful to colleagues in Labeled Compound and Radiometric of BATAN and also Padjadjaran University for their contributions in this research.

REFERENCES

[10] Idzni, F., Setiawan, D., and Hastiawan, I., 2015, Synthesis and characterization of ligand 1,4,7-triazacyclononane-N,N',N''-triacetate acid (NOTA)
with chloroacetic acid precursors, Essay, Undergraduate Studies Program Faculty of Chemistry, Padjadjaran University, Bandung - Indonesia.

